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Virtues and Limitations of Markovian Master
Equations with a Time-Dependent Generator
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A Markovian master equation with time-dependent generator is constructed
that respects basic constraints of quantum mechanics, in particular the von
Neumann conditions. For the case of a two-level system, Bloch equations with
time-dependent parameters are obtained. Necessary conditions on the latter are
formulated. By employing a time-local counterpart of the Nakajima�Zwanzig
equation, we establish a relation with unitary dynamics. We also discuss the
relation with the weak-coupling limit. On the basis of a uniqueness theorem,
a standard form for the generator of time-local master equations is proposed. The
Jaynes�Cummings model with atomic damping is solved. The solution explicitly
demonstrates that reduced dynamics can be described by time-local master
equations only on a finite time interval. This limitation is caused by divergencies
in the generator. A limit of maximum entropy is presented that corroborates the
foregoing statements. A second limiting case demonstrates that divergencies may
even occur for small perturbations of the weak-coupling regime.

KEY WORDS: Quantum dissipation; Markovian master equations; Gorini�
Kossakowski�Sudarshan�Lindblad generators; Jaynes�Cummings model.

1. INTRODUCTION

Almost 25 years ago, Gorini, Kossakowski, and Sudarshan, (1) as well as
Lindblad, (2) made a contribution of axiomatic character to the quantum
theory of dissipative systems. Specializing to the case of constant gener-
ators, these authors managed to construct the most general Markovian
master equation, accordant with one single principle: validity of the
representation 4(t) \=� j Wj (t) \W -

j (t) for the quantum dynamical map
4(t) governing the evolution in time of a reduced density operator \.(3�5)

633

0022-4715�00�0800-0633�18.00�0 � 2000 Plenum Publishing Corporation

1 Instituut voor Theoretische Fysica, Universiteit van Amsterdam, NL-1018 XE Amsterdam,
The Netherlands.

2 Physikalisch-Chemisches Institut der Universita� t Zu� rich, CH-8057 Zu� rich, Switzerland.



An axiomatic approach offers the possibility to find out at one blow,
which types of dissipative dynamics are tolerated by the basic principles
of quantum mechanics. For instance, from the above-mentioned master
equation one learns that exponential decay of a two-level system is driven
by at most three different damping constants, which must satisfy certain
inequalities.(6) As can be seen from the standard Bloch equations, (7�10)

violation of these may impair the positivity of the density matrix for large
times.(11)

If one plans to apply Markovian master equations to concrete
problems in, e.g., quantum optics or nuclear magnetism, then one cannot
exclusively work in an axiomatic fashion. One has to make a connection to
unitary dynamics, by deriving generators on the basis of the Schro� dinger
equation. As regards the case of constant generators, this task can be
accomplished with the help of either the weak-coupling(12) or the singular-
coupling(13) limit.

Constant generators, which originate from mathematically less
rigorous procedures, frequently disobey the axiomatic constraints. Some
derivations, however, do not merit to be set aside, in view of their relevance
to experiment or innovative power for theory. Examples are adiabatic
elimination of fast variables, (14, 15) avoidance of the rotating-wave approxi-
mation, (16, 17) and nonperturbative study of atomic decay.(18)

To avoid losing those constant generators that are physically useful,
but occasionally violate the positivity of the density operator, a mending
trick was proposed in the literature.(15, 19, 20) By adapting the initial condi-
tions, one can make sure that states with negative probability do not show
up at physically relevant times. The initial density operator is sacrificed
under the argument that a Markovian master equation with constant gener-
ator is anyhow incapable of providing a faithful description for small times,
when the dynamics is still reversible.

The unsatisfactory state of affairs as outlined above, and in particular
the last observation, motivates us to enlarge the family of sound Markovian
master equations by dropping the concept of constant generators. We shall
pursue the axiomatic approach, working with time-dependent generators.

In our opinion, the restriction to constant generators is too stringent
sometimes. We cannot expect that each derivation of a Markovian master
equation will allow us to render the generator independent of time. Indeed,
time-local master equations were already employed in studying a variety of
problems, including description of dissipative dynamics in the presence of
external forces, (21) quantization of an electromagnetic field inside a lossy
optical cavity, (22) application of the stochastic wave-function method to
dynamics of quasi-irreversible character, (23) exact solution of a model for
quantum mechanical dissipation, (24) and quantum mechanical description
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of a damped oscillator.(25) As appears from refs. 26�28, the demand for
time-dependent generators also exists among experimentalists.

Our paper is organized as follows. In the next section, we derive suf-
ficient conditions for extending the axiomatic work on constant generators
to the time-dependent case. For the Bloch equations with time-dependent
parameters, the issue of positivity is studied in detail. A relation between
Markovian master equations and unitary dynamics is established in Section 3.
With the help of a uniqueness theorem, proved in Appendix A, a standard
form for generators is derived. An important complication regarding practi-
cal employment of Markovian master equations, is discussed in Section 4.
Use is made of the solution of the Jaynes�Cummings model with atomic
damping, which is obtained in Appendix B. A summary of our findings is
presented in Section 5.

Before closing, a few words must be said about terminology. Follow-
ing original definitions, we call in this work the master equation d\(t)�dt=
L(t) \(t) either nonstationary Markovian or time-local. In the physics
literature, the term Markovian usually indicates that generator L is con-
stant. The case of a time-dependent generator may be termed then non-
Markovian. As appears from the footnote on p. 274, this convention was
adopted in ref. 11.

2. CONSTRUCTION OF A TIME-LOCAL MASTER EQUATION

We consider a non-relativistic open quantum system S that is com-
posed of N non-degenerate levels. The dynamical behavior is described by
a density matrix \(t) that belongs to the Banach space M(N ) of complex
(N_N ) matrices, and acts on the Hilbert space CN of complex N dimen-
sional vectors. An arbitrary set of linearly independent matrices spanning
the space M(N ), will be denoted as [Bk]N2

k=1 . Sometimes, use will be made
of the more specific basis set [Fk]N2&1

k=0 . The new matrices possess the con-
venient property Tr(FmF -

n)=$mn for 0�m, n�N 2&1. Matrix F0 is equal
to N &1�21N , so all other matrices of the set are traceless.

We interpret the set [(,j | \(t) |,j )]N
j=1 as a normalized probability

distribution [ pj | pj�0, �N
k=1 pk=1]N

j=1 ; the vectors [ |,j )]N
j=1 make up

an arbitrary orthonormal basis of the Hilbert space. Therefore, on the
density matrix the von Neumann conditions

Tr \(t)=1, \(t)�0 (1)

must be imposed. It follows that the matrix \(t) is Hermitian.
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We set out to construct a Markovian master equation with time-
dependent generator that respects the constraints (1). Guided by the struc-
ture of the quantum dynamical map 4(t) as given in the Introduction, we
start from the inequality

Wm(t) \(t) W -
m(t)�0 (2)

For each integer m, element Wm(t) of M(N ) is assumed to be continuous
in time. Then the Volterra-type equation

\~ (t)=\(t0)+* :
J

m=1
|

t

t0

ds Wm(s) \~ (s) W -
m(s) (3)

is well defined. Parameter * is real and positive. The iterative solution of
Eq. (3) converges uniformly on each time interval t0�t�T. With the help
of induction in the order of iteration, one proves that it can be represented
as

\~ (t)=\(t0)+ :
�

n=1

*n :
N2

k, l=1

3� (n)
kl (t, t0) Bk \(t0) B-

l (4)

where the matrix [3� (n)
kl (t, t0)]N2

k, l=1 # M(N 2) is positive for t>t0 , and
vanishing for t=t0 . In Eqs. (3) and (4) tildes have been added so as to
stress that the equality Tr \~ (t)=Tr \(t0) is false in general.

The condition of trace conservation can be fulfilled upon transforming
the operator \~ (t) in the following vein:

\(t)=Q+(t) \~ (t) Q-
+(t) (5)

Q'(t)=T' exp _' |
t

t0

ds K(s)& (6)

with '=+, &. Operator T+(&) orders a product of matrices such that
time arguments increase (decrease) when going from the right to the left.
Owing to (2), the transformed matrix \(t) is still positive. There is no
restriction on the choice of the matrix K(t) # M(N ); just for convenience,
continuity in time will be assumed.

By employing the identities (5) and (6), as well as

Q+(t) Q&(t)=1N (7)

we derive from (3)

d
dt

\(t)=K(t) \(t)+\(t) K -(t)+ :
J

m=1

W� m(t) \(t) W� -
m(t) (8)
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Parameter * has been set equal to unity, and the transformed matrix

W� m(t)=Q+(t) Wm(t) Q&(t) (9)

has been introduced. We ensure trace conservation by letting the trace of
the right-hand side of (8) vanish. This surely happens if

K(t)+K-(t)+ :
J

m=1

W� -
m(t) W� m(t)=0 (10)

Hence, the Hermitian matrix

H(t)=
i
2

[K(t)&K-(t)] (11)

can be freely chosen. The choice of the set [W� m(t)]J
m=1 is also free, because

matrices Q+, &(t) are invertible.
The structure of Eq. (8) can be simplified through use of a fixed basis

for the space M(N ). By writing

W� m(t)= :
N 2

k=1

cmk(t) Bk (12)

we maintain full generality. The complex coefficients [cmk(t)] are not
subject to any constraints, so the sum

dkl (t)= :
N2

m=1

cmk(t) c*ml (t) (13)

represents the (kl ) element of any positive (N 2_N 2) matrix. Integer J has
been set equal to N 2.

Substitution of (12) into (8), and use of (10), provides us with the
time-local master equation in final shape. It is given by

d
dt

\(t)=L(t) \(t) (14)

with the time-dependent generator

L(t)=LH(t)+LD(t) (15)

LH(t) M= &i[H(t), M] (16)

LD(t) M= 1
2 :

N2

k, l=1

dkl (t)[[BkM, B-
l ]+[Bk, MB-

l ]] (17)
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and M # M(N ) arbitrary. Any matrix commutes with the unit matrix, so
the property

Tr H(t)=0 (18)

can be employed at will. By means of the choice [Bk=Fk&1]N2

k=1 one can
reduce the dimension of the damping matrix [dkl (t)] to [(N 2&1)_
(N 2&1)]; all contributions with k=0 or l=0 can be moved to Hamiltonian
H(t). For the sake of clarity, we emphasize that our construction of master
equation (14) puts into existence two conditions, namely, H-(t)=H(t) and
[dkl (t)]�0.

Defining a quantum dynamical map 4(t, t0) according to

\(t)=4(t, t0) \(t0) (19)

we deduce from solution (4) and transformation (5) that the evolution
equations (14)�(17) generate a map of the following standard(3�5) form:

4(t, t0) M= :
N2&1

k, l=0

3kl (t, t0) Fk MF -
l (20)

with M # M(N ) arbitrary. The initial condition on map 4 is translated as

3kl (t0 , t0)=N$k, 0$l, 0 (21)

By construction, the matrix [3kl (t, t0)] is differentiable for all t�t0 and
positive. Result (20) thus demonstrates that the positivity of the initial
density matrix \(t0) is preserved by the evolution equations (14)�(17). On
the other hand, since conservation of trace is manifest from (14)�(17), the
map (20) surely satisfies the constraint

:
N 2&1

k, l=0

3kl (t, t0) F -
l Fk=1N (22)

Note that the vanishing of Tr(M\) for arbitrary density matrix \ implies
the vanishing of matrix M.

In case the Hamiltonian and damping matrix do not depend on time,
prescription (15)�(17) generates a well-known class of Markovian master
equations. It was created during the mid seventies by Gorini, Kossakowski,
and Sudarshan, (1) as well as by Lindblad.(2) Focusing on Eq. (14) with
generator L independent of time, these authors proved that L has structure
(15)�(17), with H-=H, [dkl] # M(N 2&1), [dkl]�0, and [Bk=Fk]N2&1

k=1 ,
if and only if the corresponding quantum dynamical map has structure
(20)�(22), with [3kl (t, t0)]�0.
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Sometimes, (29) the construction of a constant generator (15)�(17) is
carried out on the basis of the following argument: for safeguarding the
positivity of the density matrix, it is sufficient to prove that the derivative
d*(t)�dt of any eigenvalue *(t) of the density matrix is nonnegative when-
ever *(t) becomes zero. Unfortunately, this argument ignores the possibility
of inflection points. For any physically acceptable dynamics the derivative
of *(t) must become zero whenever one has *(t)=0. It is not the first, but
rather the second derivative of *(t) that rules over the positivity of the
density matrix.

Returning to the case of a time-dependent generator, we diagonalize in
(17) [dkl (t)], which is positive by construction. The ensuing master equa-
tion has the so-called Lindblad form, and appeared in the recent
literature.(23) We should also mention that time-local master equations
were in use for describing a quantized electromagnetic field inside a lossy
optical resonator.(22) However, systematic classifications of nonstationary
Markovian master equations, and more specifically, general theorems on
the relation between such equations and the quantum dynamical map (20),
have not been published as yet.

By deriving the evolution equations (14)�(17), we have made a modest
start in tackling the complicated problem of extending current knowledge
on Markovian master equations. We have formulated conditions on Eqs.
(14)�(17), which guarantee that their solution evolves in line with a map
(20)�(22), for which the matrix [3kl (t, t0)] is positive. As pointed out
earlier, for the case of a constant generator these conditions are both
necessary and sufficient. It is important to recognize that the situation
becomes much different if the generator depends on time. An example will
be presented below.

Before treating this example, we shall develop some feeling for the
difficulties provoked by time-dependent generators. Let us walk the route
from Eqs. (19)�(22) to Eqs. (14)�(17) that demonstrates for the case of a
constant generator the necessity of the earlier-mentioned conditions on the
Hamiltonian and damping matrix. We differentiate (19) with respect to t,
employ (20)�(22), and choose time t equal to t0 . Comparison of the result-
ing identity to (14) reveals that generator L(t0) takes on structure
(15)�(17), the basis set of matrices being [Fk]N 2&1

k=0 . The Hamiltonian and
damping matrix come out as

H(t0)=
i
2

N &1�2 :
N2&1

k=1

lim
= a 0

3k0(t0+=, t0) =&1Fk+h.c. (23)

dkl (t0)=lim
= a 0

3kl (t0+=, t0) =&1�0 (24)
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with 1�k, l�N 2&1. Matrix (23) is Hermitian, and matrix (24) positive.
However, as long as the Hamiltonian and damping matrix depend on time,
this conclusion does not offer us any information about the properties of
the generator at times later than t0 .

It is instructive to examine the quantum dynamical map that belongs
to the Bloch equations with time-dependent coefficients. These read

d
dt

p(t)=&[#=(t)+i|(t)] p(t)

(25)
d
dt

d(t)=&# | |(t)[d(t)&d�(t)]

where all coefficients #=(t), # | |(t), d�(t), and |(t) are real valued. The
polarization and inversion are defined as p(t)=(1| \(t) |2) and 2d(t)=
(2| \(t) |2)&(1| \(t) |1) , respectively. In Eqs. (14)�(17) we have made
the choices N=2, B1=F0=12 �- 2, [Bk+1=Fk=_k �- 2]3

k=1 , H(t)=
|(t) _3 �2, 2d22(t)=2d33(t)=# | |(t), d44(t)=#=(t)&# | |(t) �2, and d23(t)=
d*32(t)=i# | |(t) d�(t). The remaining elements of the damping matrix equal
zero. The set [_k]3

k=1 contains the Pauli matrices.
Upon comparing the solution of (25) to the prescription (20) for

4(t, t0=0), we arrive at the following results for nonzero matrix elements:

300= 1
2+ 1

2 :2+Re :3 , 333= 1
2+ 1

2 :2&Re :3 , 311=322= 1
2& 1

2 :2

303=3*30=&:1:2&i Im :3 , 312=3*21=i:1 :2 (26)

Time arguments have been omitted. The new functions are given by

:1(t)=|
t

0
ds # | |(s) d�(s) exp _|

s

0
du # | |(u)&

:2(t)=exp _&|
t

0
ds # | |(s)& (27)

:3(t)=exp _&|
t

0
ds #=(s)&i |

t

0
ds |(s)&

Matrix [3kl (t, t0=0)] is positive iff two inequalities hold true

1+2 |:1(t)|�:&1
2 (t), 4:2

1(t) :2
2(t)+4 |:3(t)|2�[1+:2(t)]2 (28)

These are surely satisfied if for all positive times t one has

2 |
t

0
ds #=(s)�|

t

0
ds # | |(s)�0, |d� |�1�2 (29)
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where parameter d� no longer depends on time. The above conditions
relate to the global properties of damping coefficients #=(t) and # | |(t). They
are much weaker than the conditions accompanying evolution equation (14);
for the present case the latter read 2#=(t)�# | |(t)�0, |d� |�1�2.(30)

From the above example one learns that it is certainly rewarding to
try to minimize for Eqs. (14)�(17) the package of conditions guaranteeing
a physically acceptable structure of the quantum dynamical map. We
emphasize that the earlier-discussed constraints on 4(t, t0) are well-
grounded. Any quantum dynamical map, which is derived from the
Schro� dinger equation by factorizing the initial state and taking a partial
trace, can be represented as (20), with [3kl (t, t0)] positive.(3�5)

The foregoing remarks give rise to the question whether it is possible
to make a direct contact between the time-local master equation itself and
the so-called reduced dynamics. This point will be addressed in the next
section.

3. RELATION TO REDUCED DYNAMICS

As long as we do not construct a solid bridge between the Schro� dinger
equation and the evolution equations (14)�(17), the status of the latter
remains purely phenomenological. Adopting the standard method for
deriving reduced dynamics, (7, 31) we model the sinks of energy in system S

through a coupling to a reservoir R. In general, description of the reservoir
requires a Hilbert space HR of infinite dimension. The evolution in time of
system and reservoir is governed by the density operator

\SR(t)=exp[&iHSR(t&t0)��] \SR(t0) exp[iHSR(t&t0)��] (30)

where the Hamiltonian

HSR��=HS �1R+1S �HR+*VSR (31)

is a sum of self-adjoint operators.
The Hilbert space CN of S is spanned by the orthonormal set

[ |k)]N
k=1 of eigenvectors of HS ; the eigenvalues [=k]N

k=1 of the latter are
assumed to be non-degenerate. The interaction potential can be factorized
now as follows(32):

VSR= :
N 2

:=1

V:�U: (32)
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If the double index : equals (kl ), then by definition the potential V: is
equal to the matrix |k)(l |, with 1�k, l�N. In the sequel the same
notation will be used. We assume that the reservoir potentials [U:] are
bounded in sup-norm.

As initial condition for the full density operator we choose a direct
product of density operators

\SR(t0)=\S�\R (33)

Then the reduced density matrix \S(t) governing the dynamical behavior
of S, is found as

\S(t)=TrR[exp[&iHSR(t&t0)��] \S �\R exp[iHSR(t&t0)��]]

=4(t, t0) \S (34)

Upon inserting for density operator \R its diagonal representation, one
sees that 4(t, t0) possesses the structure (20). Matrix [3kl (t, t0)] turns out
to be positive.

On the basis of result (34), an integral equation for the reduced
density matrix can be derived. In the interaction picture this Nakajima�
Zwanzig equation possesses a time-local counterpart, (33�36, 11) which reads

d
dt

\ (I )
S (t)=L(t, t0) \ (I )

S (t) (35)

The generator L(t, t0) acts on M(N ), and is linear. In explicit terms the
generator is given by a series expansion in the coupling constant *, which
can be found in ref. 11 for the case that \R and HR commute.

By utilizing the boundedness of VSR , as well as the continuity in t of
exp(iHS t) and exp(iHRt), one can prove that for any M # M(N ) the series
L(t, t0) M is convergent and continuous on an interval t0�t�t0+a,
where the bound a lies between zero and infinity.(11) Construction of super-
operator L(t, t0) entails inversion of 4(t, t0) in the interaction picture. If
t exceeds the value of t0+a, the series expansion for the inverse starts to
diverge. Consequently, evolution equation (35) no longer exists. This tem-
poral restriction cannot be circumvented by commencing integration at a
time t1 later than t0+a. Density matrix \ (I )

S (t1) cannot be freely chosen, as
it is completely determined by map (34). Incidentally, the particularity of
instant t=t0 is also illustrated by the property L(t=t0 , t0)=0, (11) which
causes the derivative in (35) to vanish at time t0 .
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We shall bring the time-local Nakajima�Zwanzig equation (35) onto
the structure (15)�(17). To that end, we merely need the following charac-
teristics of the generator(11):

[L(t, t0) M]-=L(t, t0) M -

(36)
TrS[L(t, t0) M]=0

with matrix M # M(N ) arbitrary. They safeguard normalization and
Hermiticity of the reduced density matrix.

By exploiting the linearity of L(t, t0) and the completeness of set
[ |k)]N

k=1 , we obtain the identity

L(t, t0) M= :
N2

:, ;=1

L:;(t, t0) V:MV -
; (37)

For 1�k, l, m, n�N we have defined

L(kl )(mn)(t, t0)=(k| [L(t, t0) |l)(n|] |m) (38)

Between the square brackets L(t, t0) acts on the matrix |l)(n|. The new
matrix on the left-hand side of (38) inherits from the superoperator its
continuity in time, its convergence on interval t0�t�t0+a, and properties
(36). These become

L*;:(t, t0)=L:;(t, t0) (39)

:
N

k=1

L(kl )(kn)(t, t0)=0 (40)

The last property implies that the right-hand side of (37) is of structure
(15)�(17). The Hamiltonian H(t, t0) equals zero for the moment.

To make the division (15) explicit, we transform the matrices [V:] of
decomposition (37) to a basis set containing the unit matrix. Opting for the
set [Fk]N2&1

k=0 and employing the representation

M= :
N2&1

k=0

Tr(MF -
k) Fk (41)

we find that L(t, t0) has the structure (15)�(17) again, with [Bk=Fk]N 2&1
k=1

of course. Now the Hamiltonian differs from zero

H(t, t0)=
i

2N
:
N 2

:, ;=1

Tr(V;) L:;(t, t0)[V:&Tr(V:) 1N �N]+h.c. (42)
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Property (18) is manifestly true. For the damping matrix of dimension
[(N 2&1)_(N 2&1)] the following form appears:

dkl (t, t0)= :
N2

:, ;=1

Tr(V:F -
k) Tr(V;F -

l )* L:;(t, t0) (43)

with 1�k, l�N 2&1. Derivation of the last two results requires that
property (40) be expressed with the help of the basis set [Fk]N2&1

k=0 .
All of the above steps can also be carried out for the case that the

right-hand side of (35) is truncated at some order in the coupling constant.
Accordingly, the right-hand side of (43) can be regarded as a series expan-
sion in *, which converges uniformly on the interval t0�t�t0+a. Each
term is continuous in t, and corresponds to a Hermitian matrix. Analogous
observations can be made for (42). Moreover, one should realize that the
expressions (42) and (43) are uniquely determined. This claim relies on the
following statement, the proof of which is deferred to Appendix A: the
equality

:
N 2&1

k, l=0

cklFk \SF -
l =0 (44)

is true for arbitrary density matrix \S if and only if all constants [ckl ]
equal zero. Therefore, expression (42) is maximal in the sense that no
further contributions to H(t, t0) can be extracted from the dissipative
generator LD(t, t0).

For quite a number of applications it is useful to represent the dissi-
pative generator on the basis of the eigenstates of the free Hamiltonian HS .
Making the choice [Bk=Fk]N2&1

k=1 , we substitute (43) into expression (17).
Employment of the representation Fk=�N2

:=1 Tr(FkV -
:) V: allows us to

bring the dissipative generator onto the structure (17) again, with the
replacement [Bk] � [V:] carried out. The new damping matrix [d:;(t, t0)]
is of dimension (N 2_N 2), and attains the form

d(kl )(mn)(t, t0)=L(kl )(mn)(t, t0)&$kl
1
N

:
N

p=1

L( pp)(mn)(t, t0)

&$mn
1
N

:
N

p=1

L(kl )( pp)(t, t0)+$kl$mn
1

N 2 :
N

p, q=1

L( pp)(qq)(t, t0)

(45)

As a check, one can evaluate the right-hand side of (15) with the help of
results (40), (42), and (45). One recovers decomposition (37), which is
identical to the left-hand side of (15).

By invoking the intermediate identity (35), we have made contact
between Eqs. (14)�(17) and the old Nakajima�Zwanzig equation describing
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reduced dynamics. In short, each density matrix of class (34) has been shown
to obey a nonstationary Markovian master equation of type (14)�(17).
Referring to the argument put forward near Eqs. (23) and (24), we emphasize
that the damping matrices (43) and (45) are Hermitian, but not positive in
general. Since the weak-coupling limit constitutes an exception to this
statement, we should clarify its relation with (45).

The weak-coupling theorem of the literature (12) specifies conditions
under which the limit * � 0 causes density matrix \ (I )

S (t�*2) to converge
to the solution _(t) of a Markovian master equation with a constant
generator L0 . The latter is fixed by the relations

(k| (L0M ) |l)

= :
N

m, n=1

$(|kl+|nm , 0) |
+�

&�
dt exp(i|mkt) c(nl )(mk)(t)(m| M |n)

& :
N

m=1
|

�

0
dt [exp(i|ml t) c*(lm)(lm)(t)+exp(i|km t) c(km)(km)(t)](k| M |l)

(46)

with M # M(N ) arbitrary. The frequencies |kl are defined as =k&=l . The
correlation function must be taken as(32)

c:;(t)=TrR[exp(iHR t) U: exp(&iHRt) U -
;\R] (47)

Owing to the symmetry relation c*;:(&t)=c:;(t), the first integral on the
right-hand side of (46) covers the complete time axis.

In rederiving the standard result (46), we discard all contributions
which are not of lowest, that is to say, quadratic order in *. This trunca-
tion, the justification of which will not be addressed, is indicated by adding
a superscript (2) to L(t, t0); the matrix \ (I )(2)

S (t) denotes the solution of the
truncated master equation (35). From (38) and the series for generator
L(t, t0) (ref. 11) one obtains

L(2)
(kl )(mn)(t, t0=0)=&*2$kl exp(i|nmt) :

N

p=1
|

t

0
ds exp(i|pns) c*(mp)(np)(s)

+*2 exp[i(|kl+|nm) t] |
t

0
ds

_[exp(i|lks) c(nm)(lk)(s)+exp(i|mns) c*(lk)(nm)(s)]

&*2$mn exp(i|kl t) :
N

p=1
|

t

0
ds exp(i|lps) c(kp)(lp)(s) (48)
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By mimicking the proof presented in Appendix A of ref. 11, we can
demonstrate that the weak-coupling theorem is also valid for the truncated
version of (35). The mathematical statement reads

lim
* � 0

sup
0�t�a~

&\ (I)(2)
S (t�*2)&_(t)&=0 (49)

Constant a~ can be chosen such that the time a~ �*2 lies within the domain
of existence 0�t�a for (35).(11)

Last, it must be verified that, as announced above, the damping
matrix (45) becomes positive in the weak-coupling limit. Combination of
(45) and (46) yields

d(kl )(mn)= :
[|j ]

|
+�

&�
dt exp(&i|j t) $(|kl , |j ) $(|mn , |j ) c(nm)(lk)(t)

+$kl$mn |
+�

&�
dt :

N

p, q=1

($kq&1�N )($mp&1�N ) c( pp)(qq)(t) (50)

The set [|j ] contains all nonzero values of differences [=k&=l ]N
k, l=1 . One

proves that for each set [v:]/C the sum �N2

:, ;=1 d:;v: v;* is positive indeed;
Bochner's theorem(37) should be applied to the function �N2

:, ;=1 c:;(t) w: w;*,
with set [w:]/C suitably chosen.

In the preceding, we have tacitly assumed that system S does not
experience any external forces. For that reason, HS has been taken inde-
pendent of time. If the reverse is true, then one can still set up a weak-
coupling limit for the reduced density matrix.(21) It creates a nonstationary
Markovian master equation. Hence, in deriving Eqs. (14)�(17) from first
principles, one is not obliged to pursue a route that passes through Eq. (35).
An advantage of the alternative route is that generators exist at all times.

4. DAMPED JAYNES�CUMMINGS MODEL

The significance of studying properties and solutions of time-local
master equations will stand or fall with the question whether the domains
of existence of the involved generators extend to physically relevant times.
If an observer does not record any appreciable changes in system S during
an interval t0�t�t0+a, then one may criticize any attempt to explore the
dynamical behavior of S within the framework of (35). In the following,
several restrictions on domains of existence will be discussed for the case of
a two-level atom.

To achieve a fair degree of flexibility, we assume a coupling to a big
reservoir that brings about irreversibility, and on top of that, a coupling
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to a small reservoir that is incapable of depleting S permanently. The
coupling constants are called # and *, respectively. The small reservoir is
made up by a single mode of the quantized electromagnetic field. The
corresponding Hilbert space HF is spanned by the orthonormal photon-
number states [( p!)&1�2 (a-) p |0)]�

p=0 , and has state a |0) as zero element.
The ladder operators a and a- satisfy the standard commutation relation
[a, a-]=1.

In the interaction picture the evolution equation for the density
operator \(t) describing the composite of atom and field mode, is given by

d
dt

\(I )(t)=&i*[_+ �a+_&�a-, \ (I )(t)]

+#[2(_&�1F) \(I )(t)(_+ �1F)

&(i+�1F) \(I )(t)&\(I )(t)(i+�1F)] (51)

The abbreviations |2)(2|=i+ , |1)(1|=i& , |2)(1|=_+ , and |1)(2|=_&

have been used. Equation (51) can be solved by means of a recipe
developed in ref. 38. As initial condition we choose

\(t=0)=\S � | p)( p| (52)

where \S denotes an arbitrary density matrix of dimension (2_2), and | p)
a photon-number state. Then the solution for the atomic density matrix
\(I )

S (t)=TrF[\(I )(t)] can be expressed as

(2| \ (I )
S (t) |2) =(1| \S |1) ;1(t)+(2| \S |2) ;2(t) (53)

(2| \ (I )
S (t) |1) =(2| \S |1) ;3(t) (54)

The functions [;j (t)] are computed in Appendix B.
For #=0 Eq. (51) corresponds to a Jaynes�Cummings model with

zero detuning.(39) The composite of atom and field mode undergoes a
unitary evolution, so for matrix \ (I)

S (t) the complete theory of the previous
section is available. The complication that the potentials U(21)=a and
U(12)=a- are unbounded, can be taken care of. One starts to work with a
basis set [ | p)]J

p=0 for HF , and eventually takes integer J to infinity.
The choice *=0 allows us to write \(I )(t)=\ (I )

S (t)� | p)( p| for the
solution of (51). The atomic density matrix satisfies a Markovian master
equation with constant generator, which describes spontaneous emission
of photons into electromagnetic modes other than the privileged one. The
generator belongs to class (46); obviously, its domain of existence covers
the complete positive time axis.
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For the case *>0, #>0 the route from the level of unitary dynamics
down to the dynamics of density matrix \S(t) does not count one, but two
instants at which a partial trace is evaluated. In between those, a weak-
coupling limit is taken. Despite this difficulty, one can still construct a
time-local master equation (35) for \ (I )

S (t). In the formalism presented in
Section 3 of ref. 11, the superoperator A need not be specified. One has the
freedom of matching operator A\ to the right-hand side *A1 \+#A2 \ of
(51). Subsequently, the series expansion for generator L(t, t0) can be
derived along the same lines as for the case #=0. Altogether, it is permitted
to talk about a time-local master equation for the atomic density matrix
within the setting of the damped Jaynes�Cummings model.

In calculating L(t, t0), we shall not resort to the series expansion.
A much faster method adopts Eqs. (53)�(54) as a starting point. Substitu-
tion into (35), and employment of the linearity of L(t, t0) as well as the
arbitrariness of the initial density matrix \S , leads to

L(t, t0=0)[i&]=(i+&i&) _;2

d
dt

;1&;1

d
dt

;2&<(;2&;1)

L(t, t0=0)[i+]=(i+&i&) _(;2&1)
d
dt

;1&(;1&1)
d
dt

;2&<(;2&;1)

L(t, t0=0)[_+]=_+ _ d
dt

;3&<;3 (55)

The result for matrix _& is fixed by the symmetry relation (36).
Identities (55) make the singular behavior of L(t, t0) tangible.

Divergencies occur if one of the following equations is true:

;1(t)=;2(t), ;3(t)=0 (56)

The functions [;j (t)] have the initial values ;1(t=0)=0, ;2(t=0)=
;3(t=0)=1, and are continuous in time. Therefore, (56) confirms our
earlier-made claim that on an interval t0�t�t0+a, with 0<a<�,
generator L(t, t0) surely exists.

To make the case final, one should check that the singularities (56)
really originate from the process of constructing a time-local counterpart of
the Nakajima�Zwanzig equation. For the dynamics (51)�(52) the latter can
be written as

\ (I )
S (t)=\S+|

t

0
ds K(t&s) \ (I )

S (s) (57)
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The integral kernel K(t) is a superoperator, characterized by

K(t)[i&]=(i+&i&) k1(t),

K(t)[i+]=(i+&i&) k2(t), (58)

K(t)[_+]=_+ k3(t)

Laplace transformation of (57) according to

f� (z)=&i |
�

0
dt exp(izt) f (t), Imz>0 (59)

enables us to express the c-number functions as

k� 1(z)=
&i;� 1(z)

;� 2(z)&;� 1(z)
, k� 2(z)=

i[1&z;� 2(z)]

z[;� 2(z)&;� 1(z)]
, k� 3(z)=

i
z;� 3(z)

(60)

In Appendix B it becomes clear that for the initial condition (52) all trans-
forms [k� j (z)] are meromorphic, the number of poles being finite. Hence,
the kernel K(t) exists on the complete positive time axis.

As a side remark, we point out that for the case of undamped Rabi
oscillations, i.e., damping constant # taken as zero and initial conditions
(52) in force, all inverse transforms of (60) can be computed analytically.
The integral kernel is stripped of its formal(40) character. One gets

kj (t)=+j sin(&j t)+!j t (61)

with j=1, 2, 3. Into the linear term the equalities !1=&!2=4p( p+1) *2�
(2p+1), !3=&*2�(2p+1) must be inserted. The constants [+j , &j ] depend
on p as well. In contrast to the density matrix \ (I )

S (t), K(t) is not uniformly
bounded on the positive time axis.

We are in a position now to investigate on which time intervals the
integral equation (57) has a time-local counterpart. The choice #=0 makes
analytic solution of the conditions (56) feasible. Generator L(t, t0=0)
exists on the interval [0, a], where the endpoint a may not exceed the value
of Td - 1+ p�(- 1+ p+- p ). After a decay time of Td =?�(2* - 1+ p), an
excited atom reaches the ground state through emission of a photon, so the
interval [0, a] definitely contains some relevant physics. This conclusion
need not be modified if the ratio #�* is increased to a small nonzero value.

Any evolution exhibiting a series of almost undamped Rabi oscilla-
tions, may be rightly typified as quasi-reversible for times much smaller
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than 1�#. Hence, for the case #�*<<1 the result a<� was to be expected;
one is far away from the truly irreversible case *=0, for which constant a
surely equals infinity. Less obvious is the fact that for some nearly irreversible
evolutions, a may become finite already. An example is contained in the
atomic dynamics governed by master equation (51). Below it is argued that
a slight perturbation of the weak-coupling regime causes a to decrease from
infinity to a finite value; the initial photon number p is assumed to be high.
Under such circumstances an intermediate coupling regime(23) does not
exist. Meant is a choice of coupling constants, for which on the one hand
a is infinitely large, and on the other hand, significant departures from the
weak-coupling dynamics can be observed, for instance, oscillatory (38) or
non-exponential decay.(41)

We shall work in the limit p � �, *�# � 0, with #t fixed, and the
parameter ==*2p�#2 small. The material of Appendix B guides us to the
approximate solutions

;1(t)==w&2e&#t[e&w#t+ew#t&2]+O(=2)
(62)

;2(t)=w&2e&#t _\1
2

+
w
2

&=+ e&w#t+\1
2

&
w
2

&=+ ew#t&2=&+O(=2)

where the root w=(1&4=)1�2 has been defined. Discarding the quadratic
remainders O(=2), we infer from the first condition (56)

a=(2w#)&1 log \1+w
1&w+ (63)

Elaboration of the second condition (56) does not tighten this boundary.
We should estimate the maximum magnitude of = for which bound

(63) is still reliable. For that purpose, we also compute the second diagonal
of the atomic density matrix in leading order. As for (62), the ensuing
expression is exact at t=0, and converges to zero for t tending to infinity.
Consequently, for large times our approximation breaks down due to
violation of trace conservation. At instant t=a, both diagonals do not
depend on the initial density matrix \S ; they behave as

(1| \ (I )
S (t=a) |1)=(=&1�2&3=1�2&2=) w&2 \1&w

1+w+
1�(2w)

(64)

(2| \ (I )
S (t=a) |2)=(=1�2&2=) w&2 \1&w

1+w+
1�(2w)
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For = a 0, ==0.001, and ==0.01 the sum of these expressions equals 1+0,
0.995+0.935 } 10&3, and 0.972+0.803 } 10&2, respectively. All figures lie
inside interval [0, 1], and the relative errors in the trace amount to 0, 0.4,
and 20, respectively.

With = taken as above, prediction (63) can be trusted. One finds that
generator L(t, t0=0) does not exist beyond times a=�, 3.46�#, and 2.34�#,
respectively. The last two bounds are surprisingly low. To see this in more
detail, we choose *�#=0.01 and p=100, so that ==0.01 again. The process
of spontaneous emission is weakly perturbed indeed. Nevertheless, there is
a probability of exp(&#a)=0.1 that up to time t=a=2.34�# an excited
atom does not decay. Then no phenomena of interest take place inside
interval [0, a].

A further restriction on domains of existence has its origin in a limit
of maximum entropy. Departing from the solutions of Appendix B, one
proves that the atomic density matrix as determined by (51) and (52),
obeys the limit

lim$ \ (I )
S (t)= 1

2 12 (65)

The prime stands for the prescription that variables *�#, *t, and p be
taken to infinity such that products (#�*)4�3 *t and (#�*)2�3 p remain con-
stant. An analogous limit was established for the Jaynes�Cummings model
with cavity damping.(38) A proof of (65) will appear in a forthcoming
publication.

Since the initial density matrix \S is arbitrary, (65) supplies us with
the limits lim$ ;1(t)=lim$ ;2(t)=1�2 and lim$ ;3(t)=0; these imply that
the conditions (56) are satisfied. Whenever limit (65) is realized during the
evolution of the density matrix \ (I)

S (t), generator L(t, t0) becomes singular.
For the Jaynes�Cummings model with cavity damping an example of such
a realization can be found in ref. 38; there an evolution is scrutinized that
is quasi-reversible for small times, and purely irreversible for long times.
The transition between these stages is not immediate. Before commencing
its exponential decay to the ground state, the atomic density matrix maxi-
mizes its entropy during a long time interval. The central state 12 �2 thus
plays the role of a temporal attractor.

All in all, the limit of maximum entropy (65) is of fundamental impor-
tance. It immediately tells us that, regardless of the details of the dynamics,
time-local master equations are unsuited for furnishing a comprehensive
description of the evolution of the two-level atom. In view of the results on
maximum entropy that were obtained in ref. 38, we are confident that the
limit (65) remains valid if in (52) the photon-number state is exchanged for
a coherent state.

651Markovian Master Equations with Time-Dependent Generator



5. DISCUSSION

Before listing our main conclusions, we briefly review the setting in
which we worked. Each state \S of a closed quantum system S evolves as
U(t&t0) \SU -(t&t0) from t=t0 onwards. Time t links unitary operator
U(t) to unit operator U(t=0)=1S in a continuous fashion. In case S

suffers from energy losses to a reservoir R, it is called open. Then the
foregoing simple rotation must be replaced by a mapping 4(t, t0) \S=
� j Wj (t&t0) \S W -

j (t&t0), where time t continuously connects the
operators Wj (t) and Wj (t=0)=cj 1S to each other. The constants [cj ]
are real. The property � j W -

j (t) Wj (t)=1S comes in the place of unitarity.
It safeguards conservation of trace.

In finite dimensions, the quantum dynamical map 4(t, t0) can be cast
into the structure defined by (20)�(22). A matrix 3(t, t0) emerges that is
continuous in t and positive. In this work we regarded obedience to map
(20), and all of its afore-mentioned properties, as a fundamental constraint
on the evolution of a density matrix. One should realize that positivity of
matrix 3(t, t0) is a stronger constraint than positivity of the density matrix.
Furthermore, one should be well aware of the fact that a factorization of
the full density operator at t=t0 underlies the structure of map (20). The
use of such an initial condition can be questioned.(42�45)

In this paper, we tried to disclose the main pros and contras regarding
employment of time-local master equations for the study of open quantum
systems. Throughout our treatment, we assumed the number of quantum
levels of system S to be finite. Three positive arguments were presented.

First, any time-local master equation can be reshaped such that the
structure (15)�(17) appears. Owing to the uniqueness theorem of Appendix A,
one can derive unique relations between the Hamiltonian H(t) and the
damping matrix [dkl (t)] on the one hand, and the original generator on
the other hand. Consequently, for the latter there exists a unique decom-
position (15) into a conservative part and a dissipative part. In short, time-
local master equations can be standardized.

Second, the old Nakajima�Zwanzig equation describing reduced
dynamics of an open quantum system S, possesses a nonstationary
Markovian counterpart. Therefore, the status of time-local master equa-
tions is not phenomenological. A well-paved road from unitary dynamics
to Eqs. (14)�(17) exists. Evaluation of the generator produces an infinite
series that depends on the energy eigenvalues of S, as well as on the cor-
relation functions of R. The relation with the constant generator resulting
from the weak-coupling limit, is lucid.

Third, Hermiticity of H(t) and positivity of [dkl (t)] imply that the
evolution equations (14)�(17) meet all basic constraints on the quantum
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dynamical map. This statement may be welcomed by any experimentalist
seeking a simple, and at the same time conceptually correct, modelization
of observations on dissipative quantum systems. Often, Markovian master
equations with a constant generator fail to catch the observed phenom-
ena.(26, 27) We stress that the afore-mentioned conditions are not necessary.
For the Bloch equations with time-dependent coefficients, the condition
[dkl (t)]�0 can be much weakened. Inequalities can be proposed that have
a global rather than a local character.

The use of time-local master equations has two obvious disadvantages.
First, due to time-ordering problems, analytic solution of these equations
will be a cumbersome undertaking in general. As illustrated in Section 4,
for convolutional master equations the situation is much better. The tool
of Laplace transformation can be utilized in an effective manner.

Second, if one decides to analyze a given quantum dynamical map
4(t, t0) on the basis of a time-local master equation, then one encounters
a serious obstacle. The construction of generator L(t, t0) necessitates the
inversion of 4(t, t0); usually, this is not possible on the complete time axis
t�t0 , but merely on a closed time interval t0�t�t0+a.

As becomes clear in Section 4, we need not be afraid that the map
4(t, t0) does not start any detectable phenomena during the interval
[t0 , t0+a]. On the other hand, unpleasant cases are likely to occur. For
instance, a minor perturbation of a constant generator may cause bound a
to become finite, such that a considerable part of the evolution takes place
on the interval t�t0+a.

In conclusion, we advocate the use of time-local master equations in
studying dissipative quantum systems, provided that one keeps a sharp eye
on the existence of generators.

APPENDIX A. PROOF OF A UNIQUENESS THEOREM

As noted in the main text, one should prove that the statement (44)
leads to the result ckl=0 for all (kl ), at least, if the density matrix \S may
be arbitrarily chosen.

It is possible to set \S equal to 1N �N, 1N �N+=(Fk+F -
k), and 1N�N+

i=(Fk&F -
k), 1�k�N 2&1, provided that = is taken real and small. Hence,

in (44) density matrix \S can be replaced by any element of M(N ), for
instance, matrix | p)(q|. We thus arrive at the following consequence
of (44):

:
N 2&1

k, l=0

ckl (m| Fk | p)(q| F -
l |n) =0 (A1)

The choice of integers m, n, p, q is free.
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For the basis set of matrices we take(5)

(m| F0 |n)=N &1�2$mn

(m| F (r)
1 |n)=[r(r+1)]&1�2 \ :

r

h=1

$hm&r$r+1, m+ $mn

(A2)

(m| F (s, t)
2 |n)=($sm$tn+$tm $sn)�- 2

(m| F (s, t)
3 |n)=&i($sm $tn&$tm$sn)�- 2

with 1�r�N&1 and 1�s<t�N. These equations define the four sub-
sets of matrices, to which we shall refer below. One verifies that the above
basis set complies with all properties, proposed at the beginning of Section 2.
If the proof of uniqueness is ready for set (A2), then we are done with each
set relating to (A2) via a unitary transformation.

Each summation in (A1) falls apart into a summation over the four
subsets, and a summation over the elements of a set. We thus have to
denote the constants in (A1) as c (;1)(;2)

( j1)( j2) , where the indices j1 , j2 label sets,
and the indices ;1 , ;2 label elements of sets. For ji=0 the index ;i is
not needed, whereas for ji=1, 2, 3 one must take (;i )=(r), (s, t), (s, t),
respectively (i=1, 2).

In the adapted version of (A1) we utilize (A2). Subsequently, we make
the choices: q<n, m< p; q>n, m< p; q<n, m>p; q>n, m>p. Upon
performing the interchanges q W n and�or p W m, we find that the constants
c(m, p)(q, n)

( j1)( j2) vanish for j1 , j2=2, 2; 2, 3; 3, 2; 3, 3.
The choices m= p, q<n and m= p, q>n reduce the adapted version

of (A1) to

N &1�2c (q, n)
(0)(3)+ :

N&1

r=1

[r(r+1)]&1�2 \ :
r

h=1

$hm&r$r+1, m+ c (r)(q, n)
(1)(3) =0 (A3)

with 1�m�N. By setting m=N, constant c (q, n)
(0)(3) can be eliminated. One is

left with a homogeneous linear set of (N&1) equations for the constants
[c (m)(q, n)

(1)(3) ]N&1
m=1 , the determinant of which appears to be nonzero. Conse-

quently, all constants featuring in (A3) vanish. The choices m= p, q>n;
m< p, q=n; m>p, q=n lead us to a zero result for all remaining constants
with either j1 or j2 greater than unity.

Last, for the four cases m=n=N; m=N, 1�n�N&1; 1�m�
N&1, n=N; 1�m, n�N&1, with m= p and n=q valid throughout, the
adapted version of (A1) gives rise to four identities for the constants c(0)(0) ,
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c(r)
(0)(1) , c (r)

(1)(0) , and c (r)(r$)
(1)(1) . Elimination of the first three constants produces

the system

:
N&1

r, r$=1

!mr!nr$c (r)(r$)
(1)(1)=0 (A4)

with 1�m, n�N&1 and the abbreviation

!mr=[r(r+1)]&1�2 [%mr&r$r+1, m+r$r+1, N] (A5)

We have defined a discrete step function %mn=: 1 for m�n; 0 for m>n.
The matrix appearing in (A4) is a direct product of two matrices

[!mr], so its determinant equals [det[!mr]]2N&2. In processing (A3), the
determinant between curly brackets has been found to differ from zero.
Therefore, the constants c (r)(r$)

(1)(1) must equal zero. Returning to the original
four identities, we see that there are no nonzero constants left anymore.

APPENDIX B. SOLUTION OF THE JAYNES�CUMMINGS
MODEL WITH ATOMIC DAMPING

Use is made of a method that was developed in ref. 38. We decompose
the density operator satisfying master equation (51) as

\(I )(t)=i+ �\1(t)+_&�\2(t)+_+�\3(t)+i& �\4(t) (B1)

The atomic matrices were specified in Section 4. The field operators
[\j (t)]4

j=1 act on the Hilbert space HF . These operators can be represented
with the help of photon-number states. The corresponding matrix elements
can be stored up in the following fashion:

v(t; m, n)=[\1(t)m, n , \2(t)m+1, n , \3(t)m, n+1 , \4(t)m+1, n+1]T (B2)

The photon numbers are taken as m, n�&1, with the convention that the
matrix element \j (t)m, n=(m| \j (t) |n) equals zero in case either m or n is
negative.

In Laplace language, the master equation (51) is equivalent to an
algebraic recursion for the vector (B2), which can be solved iteratively.
Backtransformation brings us to

v(t; m, n)= :
�

k=0
�

dz
2?i

e&izt `
k&1

l=0

[[z14&iA(m+l, n+l )]&1 S(m+l, n+l )]

_[z14&iA(m+k, n+k)]&1 v(t=0; m+k, n+k) (B3)

655Markovian Master Equations with Time-Dependent Generator



for m, n� &1. The contour encircles all poles counterclockwise. In elabo-
rating the matrix product, one must preserve the order of matrices inside
the curly brackets, and furthermore, put matrices with lower index l to the
left of those with higher index l.

The matrices in (B3) are given by

A(m, n)=\
&2#

&i*(m+1)1�2

i*(n+1)1�2

0

&i*(m+1)1�2

&#
0

i*(n+1)1�2

i*(n+1)1�2

0
&#

&i*(m+1)1�2

0
i*(n+1)1�2

&i*(m+1)1�2

0 +
(B4)

A(&1, n)kl =A(0, n)kl ($k2+$k4)($l2+$l4)
(B5)

A(n, &1)kl =A(n, 0)kl ($k3+$k4)($l3+$l4)

with m, n�0. Furthermore, one has A(&1, &1)=0 and

S(m, n)kl=2i#$k4 $l1 (B6)

for m, n� &1.
Evaluation of the atomic density matrix \ (I )

S (t) requires that the vector
elements v(t; n, n)1 , v(t; n, n)4 , and v(t; n+1, n)3 be summed over all
integers n�&1. Use of (B3) leads to a double summation over k and n,
which reduces to a single finite summation after insertion of the initial
condition (52). Therefore, we do not run into problems of convergence.
From (B3) it is manifest that the functions [;� j (z)]3

j=1 , defined by (53),
(54), and (59), are meromorphic. Since all summations and products are
finite, the number of poles is finite as well.

Computation of the inverse matrices of (B3), followed by factorization
of the associated determinants, furnishes explicit expressions for the functions
[;j (t)]3

j=1 ; choosing j=1, 2, we end up with

;1(t)=&2*2 :
p&1

n=0

p !
( p&n&1)!

(&4i#*2)n

_�
dz
2?i

e&izt

(z+i#)n+1

1
>'=\1 >n

s=0 (z+i#+2'up&s&1)
(B7)

;2(t)= :
p

n=0

p !
( p&n)!

(&4i#*2)n

_�
dz
2?i

e&izt

(z+i#)n+1

[z(z+i#)&2*2( p+1)]
>'=\1 >n

s=0 (z+i#+2'up&s)

656 van Wonderen and Lendi



The definition un=[*2(n+1)&#2�4]1�2 has been employed. As the function
;3(t) is not urgently needed in Section 4, its explicit representation is not
given.

For the undamped case #=0 one obtains ;1(t)=sin2[ p1�2*t], ;2(t)=
cos2[(1+ p)1�2 *t], and ;3(t)=cos[(1+ p)1�2 *t] cos[ p1�2*t]. These solu-
tions of the standard Jaynes�Cummings model underlie the findings (61),
and the result for bound a given below (61).

In deriving Eqs. (62), we have retained in (B7) only terms with n=0.
To arrive at Eq. (64), the diagonals of the atomic density matrix must be
calculated independently of each other, that is to say, on the basis of the
solutions for the vector elements v(t; n, n)1 and v(t; n, n)4 . The summation
that equals the diagonal (1| \ (I )

S (t) |1) , must be treated carefully. In
contrast to the summations (B7), some terms with n=1 are of zeroth order
in =. They make a nonzero contribution to (64).

ACKNOWLEDGMENT

One of us (AJvW) would like to express his gratitude to Dr. L. G.
Suttorp for a series of helpful discussions.

REFERENCES

1. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17:821 (1976);
V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Rep. Math.
Phys. 13:149 (1978).

2. G. Lindblad, Commun. Math. Phys. 48:119 (1976).
3. K. Kraus, Ann. Phys. 64:311 (1971).
4. E. B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976).
5. R. Alicki and K. Lendi, in Lecture Notes in Physics, W. Beiglbo� ck, ed. (Springer, Berlin,

1987), Vol. 286.
6. K. Lendi, J. Phys. A: Math. Gen. 20:15 (1987).
7. W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).
8. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford,

1961).
9. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York,

1975).
10. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 1973).
11. A. J. van Wonderen and K. Lendi, J. Stat. Phys. 80:273 (1995).
12. L. van Hove, Physica 21:517 (1955); E. B. Davies, Commun. Math. Phys. 33:171 (1973);

Commun. Math. Phys. 39:91 (1974); Math. Ann. 219:147 (1976).
13. K. Hepp and E. H. Lieb, Helv. Phys. Acta 46:573 (1973).
14. F. Haake and M. Lewenstein, Phys. Rev. A 27:1013 (1983).
15. S. Gnutzmann and F. Haake, Z. Phys. B 101:263 (1996).
16. W. J. Munro and C. W. Gardiner, Phys. Rev. A 53:2633 (1996).

657Markovian Master Equations with Time-Dependent Generator



17. S. Gao, Phys. Rev. Lett. 79:3101 (1997); H. M. Wiseman and W. J. Munro, Phys. Rev.
Lett. 80:5702 (1998); S. Gao, Phys. Rev. Lett. 80:5703 (1998); G. W. Ford and R. F.
O'Connell, Phys. Rev. Lett. 82:3376 (1999); S. Gao, Phys. Rev. Lett. 82:3377 (1999).

18. B. M. Garraway, Phys. Rev. A 55:2290 (1997).
19. F. Haake and M. Lewenstein, Phys. Rev. A 28:3606 (1983); F. Haake and R. Reibold,

Phys. Rev. A 32:2462 (1985).
20. A. Sua� rez, R. Silbey, and I. Oppenheim, J. Chem. Phys. 97:5101 (1992).
21. E. B. Davies and H. Spohn, J. Stat. Phys. 19:511 (1978).
22. R. W. F. van der Plank and L. G. Suttorp, Phys. Rev. A 53:1791 (1996); Phys. Rev. A

54:2464 (1996).
23. H.-P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 59:1633 (1999).
24. N. G. van Kampen, J. Stat. Phys. 78:299 (1995).
25. J. G. Peixoto de Faria and M. C. Nemes, J. Phys. A: Math. Gen. 31:7095 (1998).
26. R. Boscaino, F. M. Gelardi, and J. P. Korb, Phys. Rev. B 48:7077 (1993).
27. R. N. Shakhmuratov and A. Szabo, Phys. Rev. B 48:6903 (1993).
28. D. Kohen, C. C. Marston, and D. J. Tannor, J. Chem. Phys. 107:5236 (1997).
29. T. Banks, L. Susskind, and M. E. Peskin, Nucl. Phys. B 244:125 (1984).
30. Validity of map (20), with matrix [%kl(t, t0)] positive and constraint (22) satisfied, is

stronger than validity of the von Neumann conditions (1).(1) Unfortunately, the statement
``... the Bloch equations (6) respect the von Neumann conditions iff (8) is true'' on p. 278
of ref. 11 is incorrect. It should read: ``... the Bloch equations (6) generate a quantum
dynamical map (3) iff (8) is true.''

31. F. Haake, in Springer Tracts in Modern Physics, G. Ho� hler, ed. (Springer, Berlin, 1973),
Vol. 66, p. 98.

32. Note that in ref. 11 each reservoir potential U: is assumed to be Hermitian.
33. A. Fulin� ski and W. J. Kramarczyk, Physica 39:575 (1968).
34. V. P. Vstovsky, Phys. Lett. A 44:283 (1973).
35. H. Grabert, P. Talkner, and P. Ha� nggi, Z. Phys. B 26:389 (1977).
36. N. Hashitsume, F. Shibata, and M. Shingu� , J. Stat. Phys. 17:155 (1977).
37. M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic, New York,

1975), Vol. II, p. 13.
38. A. J. van Wonderen, Phys. Rev. A 56:3116 (1997); F. Farhadmotamed, A. J. van

Wonderen, and K. Lendi, J. Phys. A: Math. Gen. 31:3395 (1998).
39. H.-I. Yoo and J. H. Eberly, Phys. Rep. 118:239 (1985); B. W. Shore and P. L. Knight,

J. Mod. Opt. 40:1195 (1993).
40. R. Ku� hne and P. Reineker, Z. Phys. B 31:105 (1978); P. Ha� nggi, Z. Phys. B 34:409 (1979).
41. P. L. Knight and P. W. Milonni, Phys. Lett. A 56:275 (1976); K. Wo� dkiewicz and

J. H. Eberly, Ann. Phys. (NY) 101:574 (1976).
42. V. Gorini, M. Verri, and A. Frigerio, Physica A 161:357 (1989).
43. P. Pechukas, Phys. Rev. Lett. 73:1060 (1994); R. Alicki, Phys. Rev. Lett. 75:3020 (1995);

P. Pechukas, Phys. Rev. Lett. 75:3021 (1995).
44. A. Royer, Phys. Rev. Lett. 77:3272 (1996).
45. G. Lindblad, J. Phys. A: Math. Gen. 29:4197 (1996); J. Math. Phys. 39:2763 (1998).

658 van Wonderen and Lendi


